溶液プロセスで作製した有機EL駆動用有機トランジスタ アレイ

Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

原田 千寬,	秦 拓也,	中馬 隆,
Chihiro Harada ,	Takuya Hata	Takashi Chuman ,
	石塚 真一, Shinichi Ishizuka,	吉澤 淳志 Atsushi Yoshizawa

要 旨 インクジェット塗布で形成した有機半導体層をもつ3インチQQVGA有機トランジスタ アレイを開発した。電極以外の層は全て溶液プロセスで形成した。作製された有機トランジスタは ヒステリシスなく良好に動作し,移動度0.45cm²/Vs,閾値電圧3.3V,オンオフ電流比10⁶の特性を 得た。さらに,このアレイを用いて有機ELディスプレイをアクティブ駆動し,良好な動画表示を確 認した。

Summary We developed a 3-inch QQVGA organic thin-film transistor (OTFT) array with an inkjetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm²/Vs, the threshold voltage was 3.3 V, and the on/off current ratio was more than 10⁶. We demonstrated a 3-inch active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving image.

キーワード:有機トランジスタ,プリンテッドエレクトロニクス,アクティブマトリックス駆動,有機EL, AMOLED

<u>1. はじめに</u>

近年,印刷技術を活用した電子デバイスの開発が盛 んに行われている。それらはプリンテッドエレクトロ ニクスと呼ばれ,現在主に用いられている真空成膜と フォトリソグラフィとの組み合わせと比較して,材料 の使用効率が高いこと,大型設備への投資が削減でき ること,製造時の消費電力が小さいことから,安価 で地球に優しい製造プロセスとして注目を集めてい る。さらに,大型基板へ容易に対応できる点も大きな 特長である。現在では,RFIDタグ,有機EL (OLED: Organic Light-Emitting Diode)ディスプレイ⁽¹⁾,有機 EL照明⁽²⁾,有機薄膜太陽電池,有機トランジスタ⁽³⁾⁻⁽⁵⁾, 酸化物トランジスタ⁽⁶⁾など,デバイス/材料を問わず 様々な分野で活用が期待され,研究開発が行われて いる。

我々はこれまでに, 有機トランジスタを用いたバッ

クプレーンの開発を行い,作製法を溶液プロセスへと シフトさせてきた^{(7).(8)}。本報告では,有機トランジス タアレイの作製法,特性,それを用いてアクティブ駆 動した有機ELディスプレイについて述べる。

2. 有機トランジスタの概要と特徴

現在,ディスプレイパネルのバックプレーン駆動素 子には、シリコン系薄膜トランジスタや酸化物トラン ジスタが用いられている^{(9),(10)}。これらに対して、活性 層に有機半導体を用いた有機トランジスタは、作製プ ロセスが比較的低温(200℃以下)で、かつ溶剤に可 溶で印刷技術が適用しやすいことから、フレキシブル デバイスを安価に作製できる可能性があるとして注目 を集めている。特に、塗布プロセスで形成された有機 トランジスタは、先述の無機系トランジスタと比較し て移動度が小さい点が難点であったが、近年では十分

高い移動度を持つトランジスタも報告されるように なってきた。有機トランジスタの移動度は半導体層の 結晶性に大きく依存するため、分子同士が配向しや すい低分子系半導体で性能が良い傾向にある。例え ば、TIPSペンタセンやBTBT誘導体を活性層に用いた トランジスタにおいて、1cm²/Vsを超える高い移動度 が報告されている(11)-(14)。一方で、半導体材料には、 高移動度だけでなく、均一性や後のプロセスに対する 耐性も求められる。上述の半導体材料の場合、均質な 膜を得るためには乾燥工程をシビアに制御する必要が あり,特に基板が大型化するほど基板全体に均質な膜 を得ることが難しい。そこで、本検討では塗布後の加 熱で結晶化するタイプの半導体材料を使用した。今回 用いたテトラベンゾポルフィリンは,低分子p型半導 体材料である⁽¹⁵⁾。前駆体は溶解性が高く、塗布によ り均質なアモルファス膜を形成できる。これを加熱す ると,分子構造が平面状に変化し,分子同士が配向し て,移動度の高い結晶性半導体膜が形成される。この 結晶膜は高い耐熱性と耐溶剤性をもつ。

3. 印刷を用いた有機トランジスタの作製

デバイス形成に用いられる印刷手法は多岐にわた る。例えば、ソニーと大日本印刷はスリットコーティ ングとオフセット印刷を用いて13.3インチ200dpiの 有機トランジスタアレイを⁽³⁾、凸版印刷はオフセット 印刷とフレキソ印刷を用いて5.35インチの有機トラン ジスタアレイを⁽⁴⁾開発している。また、ソニーは他に インクジェット印刷とスクリーン印刷を用いた4.8イ ンチの有機トランジスタアレイも開発している⁽⁵⁾。そ れぞれの印刷技術には特徴があり、トランジスタの各 層に求められる特性に合わせて形成手法を選ぶ必要が ある。

インクジェット法はしばしば有機半導体層の形成に 用いられる。基板に対して非接触であることから,高 い結晶性が求められる半導体層の形成には適してい る。また,必要な部分のみに材料を付加していく加法 プロセスであること,マスクを必要としないことか ら,材料の使用効率が高く,基板サイズやパターンに 左右されない自由度の高い印刷手法である。

本検討では、インクジェット印刷で形成したテトラ ベンゾポルフィリン半導体層をもつ3インチ有機トラ ンジスタアレイを開発した。さらに、そのアレイを 用いた有機ELディスプレイのアクティブ駆動を実現 した。

4. 3インチ有機トランジスタアレイの作製法

図1に試作した有機ELディスプレイの画素回路図を 示す。各画素は2つのトランジスタ(スイッチングト ランジスタ:Sw-TFTとドライビングトランジスタ: Dr-TFT),キャパシタ,有機ELで構成されており,ア クティブマトリックス型有機ELディプレイの画素回路 としては最も一般的なものである。

図1 有機トランジスタアレイの画素回路図

図2に試作した有機ELディスプレイの断面図を示 す。トランジスタはボトムゲート,ボトムコンタクト 型とし,有機ELはトランジスタの横に並置し,基板側 に発光させるボトムエミッション構造とした。

図2 有機ELディスプレイの断面図

各電極は、ゲート電極を含む下部電極に膜厚100 nmのCr, ソース/ドレイン電極を含む上部電極にCr (膜厚5nm)とAu(膜厚100nm)の積層膜, 有機EL の陽極に膜厚100nmのIZO(Indium-zinc-oxide)を用 い、それぞれスパッタ成膜とフォトリソグラフィにて 形成した。有機トランジスタアレイの電極以外の部分 は、全て溶液プロセスにて形成した。まず、ゲート絶 縁層とキャパシタ絶縁層には、スピンコート塗布した ポリシラザン膜に真空紫外光を照射することでSiO₂膜 を形成した。光照射時の基板温度は150℃,照射時間 は2時間とした。得られたSiO2の膜厚は200nm,比誘 電率は3.9であった。バンク層と層間絶縁層は,感光 性樹脂をスピンコート塗布し, フォトリソグラフィに てパターニングした。また有機半導体層には、安息香 酸エチルに溶解した前駆体をインクジェット塗布し、 235℃で熱処理することで、テトベンゾポルフィリン の多結晶膜を形成した。試作した有機トランジスタア レイの最高プロセス温度は235℃である。

ゲート絶縁層兼キャパシタ絶縁層のSiO₂を形成す る際には、キャパシタの上部電極とDr-TFTのゲート 電極を繋ぐためのコンタクトホールを設ける必要が ある。そこで今回、SiO₂絶縁層とコンタクトホール を同時に形成する手法を開発した(図3)。まず、コ ンタクトホールを形成する場所に撥液樹脂を形成す る(図3(a))。この基板にポリシラザン溶液をスピン コート塗布すると、撥液樹脂上では溶液がはじかれ、 撥液樹脂のない部分にポリシラザン膜が形成される

(図3(b))。次に,Xe₂エキシマランプを用いて波長 172nmの真空紫外(VUV)光を照射することで,撥液 樹脂は分解されて取り除かれ,ポリシラザン膜はSi-N 結合の切断と活性酸素の強力な酸化作用によりSiO₂膜 へ変換される(図3(c)(d))。この手法により,直径15 µmのコンタクトホールが,基板全面に渡って良好に 形成されていることを確認した。

試作した有機トランジスタアレイの1画素の拡大 写真を図4に示す。ピクセルサイズ390×390 μ m², 開口率30%, Sw-TFTのチャネル長(L)/チャネル幅 (W) 比L/W=5 μ m/85 μ m, Dr-TFTのL/W=5 μ m/150 μ mとした。

この有機トランジスタアレイ上に,緑色の燐光 OLEDを蒸着し,最後に窒素雰囲気下でガラス缶封止 することで,有機ELディスプレイを完成させた。

図3 SiO₂絶縁層とコンタクトホールの形成工程

5. 有機トランジスタアレイの特性とアクティブマ トリックス駆動

本検討で用いた有機EL素子の典型的な輝度-電流特 性を図5に示す。横軸は有機トランジスタアレイ1画 素あたりの電流値に変換されている。これは,有機EL ディスプレイを良好に表示するためには,現実的な 電圧範囲の中で,ドライビングトランジスタが約1× 10⁶A以上のオン電流と1×10⁹A以下のオフ電流を示 す必要があることを示している。

図5 OLEDの輝度-電流特性

有機トランジスタの電気特性は室温,暗所にて測定 した。図6に有機トランジスタアレイと同一基板上に 形成されたTEG (Test Element Group)の伝達特性と 出力特性を示す。TEGはアレイのトランジスタと同時 に形成され,層間絶縁層でオーバーコートされた状 態である。伝達特性はドレイン電圧Vdを-18Vに固定 し,ゲート電圧Vgを10Vから-18Vの間で往復掃引して 測定し,出力特性はVgを0Vから-18Vの間で固定し,

VdをOVから-18Vに片道挿引して測定した。図6(a)の ように,作製された有機トランジスタはヒステリシス なく良好な特性を示した。この伝達特性から,移動度 $\mu = 0.45 \text{ cm}^2/\text{Vs}$,閾値電圧Vt = 3.3 V,オンオフ電 流比On/Off > 10^6 が見積もられた。この特性は先述し たOLEDのアクティブ駆動に必要な条件をクリアして いる。

図6 有機トランジスタの(a)伝達特性と(b)出力特性

さらに、3インチアレイと同じ面積のエリアに多数 のトランジスタを形成したテスト基板を用いて、有機 トランジスタの特性バラツキを評価した。この基板 は、層間絶縁層まで3インチアレイと同一のプロセス にて形成し、OLEDの形成のみを省いた。図7に同一基 板上に形成された12個のトランジスタの伝達特性を 示す。伝達特性は-30Vで測定した。移動度の平均値は 0.23cm²/Vs、変動係数は17%、閾値電圧の平均値は -1.7V、標準偏差は1.6Vであった。

図7 有機トランジスタのバラツキ

このような有機トランジスタアレイで有機ELディ スプレイのアクティブ駆動を試みた。表1にアクティ ブマトリックス有機ELディスプレイの駆動条件を示 す。駆動には電圧プログラムによる電流駆動法,す なわち,データ電圧V_{data}に256レベルの信号を印加 することで,Dr-TFTに流れる電流値を変化させて各 画素の発光輝度を制御する手法を用いた。図8は駆 動中の有機ELディスプレイの写真である。欠陥や輝 度バラツキが見られるものの,はっきりと動画を表 示することが可能であった。このパネルにてピーク 輝度170cd/m²が得られた。パネルの仕様を表2に まとめる。

Dr-TFTの性能は各画素の輝度に直接影響を与える。 画素間で見られる輝度バラツキは、図7で示したよう なトランジスタの特性バラツキに起因するものであ り、トランジスタの性能を均一化することでより滑ら かな動画表示が可能になると考えている。

駆動方式	2Tr+1C 電圧プログラムによる 電流駆動法
V _{data} (peak to peak)	12 V
V _{scan} (peak to peak)	21 V
V_a, V_{cap}	8.5 V
V _k	2.5 V
フレーム周波数	60 Hz
ライン周波数	7.2 kHz

条件

表2 有機ELディスプレイの仕様

ディスプレイサイズ	3 inch
ピクセル数	160 x 120 (QQVGA)
ピクセルサイズ	390 x 390 mm ²
開口率	30 %
OLEDデザイン	ボトムエミッション
階調	256
ピーク輝度	170 cd/m ²

図8 有機ELディスプレイの写真

6. まとめ

インクジェット塗布で形成した有機半導体層をもつ 3インチQQVGA有機トランジスタアレイを開発した。 電極以外の層は全て溶液プロセスで形成した。有機ト ランジスタはヒステリシスのない良好な特性を示し, 移動度0.45cm²/Vs, 閾値電圧3.3V, オンオフ電流比 10⁶の特性を得た。さらに,このアレイを用いて有機 ELディスプレイをアクティブ駆動し,良好な動画表示 を確認した。

<u>7. 謝辞</u>

本研究を進めるにあたり,SiO₂絶縁膜に関して技術 サポートしていただいた産業総合研究所の関係者様, 有機材料を提供いただいた三菱化学科学技術研究セン ターの関係者様に深く感謝致します。

- M. Ando, T. Imai, R. Yasumatsu, T. Matsumi, M. Tanaka, T. Hirano, and T. Sasaoka, SID 12 Dig., p. 929 (2012)
- (2) http://pioneer.jp/press/2012/pdf/0604-1.pdf
- (3) R. Akiyama, K. Kurihara, N. Yoneya, T. Fukuda, H. Abe, A. Yumoto, I. Yagi, M. Tanaka, K. Nomoto, H. Ueno, M. Nasuichi, and H. Adachi: SID 12 Dig., p. 168 (2012)
- (4) R. Matsubara, Y. Harada, K. Hatta, T. Yamamoto, M. Takei, M. Ishizaki, M. Matsumura, K. Ota, and M. Ito, SID 12 Dig., p. 419 (2012)
- (5) N. Kawashima, N. Kobayashi, N. Yoneya, H. Ono, T. Fukuda, T. Ohe, Y. Ishii, A. Nomoto, M. Sasaki, and K. Nomoto, SID 09 Dig., p. 25 (2009)
- (6) J. Steiger, D. V. Pham, M. Marinkovic, A. Hoppe, A. Neumann, A. Merkulov, and R. Anselmann, Proc. IDW 12, p. 759 (2012)
- (7) 中馬隆,大田悟,原田千寛,吉澤淳志,宮口敏,佐藤英夫,田辺貴久,土田正美,パイオニアR&D, Vol.15, No.2, p.62
- (8) C. Harada, S. Ohta, T. Chuman, H. Ochi, H. Sato, S. Ishizuka, and A. Yoshizawa, Proc. IDW 07, p. 1977 (2007)
- (9) K. Y. Lee, SID 11 Dig., p. 175 (2011)
- (10) C. W. Han, K. M. Kim, S. J. Bae, H. S. Choi, J. M. Lee, T. S. Kim, Y. H. Tak, S. Y. Cha, and B. C. Ahn, SID 12 Dig., p. 279 (2012)
- (11) J. E. Anththony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001)
- (12) S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, Appl. Phys. Lett. 91, 063514 (2007)
- (13) H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc. 129, 15732 (2007)
- (14) H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature, 475, 364 (2011)
- (15) S. Aramaki, Y. Sakai, and N. Ono, Appl. Phys. Lett. 84, 2085 (2004)

筆者紹介

原田 千寛(はらだ ちひろ) 研究開発部EL研究部に 所属。 有機トランジスタの研究を経て,現在は塗布型バックプ レーンの研究開発に従事。

秦 拓也(はた たくや)

研究開発部EL研究部に 所属。 電子放出素子の研究開発,有機ELを用いた3Dディスプ レイ,有機トランジスタの研究を経て,現在は塗布型 バックプレーンの研究開発に従事。

中馬 隆(ちゅうまん たかし)

研究開発部EL研究部に 所属。 有機系色素を用いた追記型光ディスク,電子放出素子の 研究開発,有機ELを用いた3Dディスプレイ,有機トラ ンジスタの研究を経て,現在は塗布型バックプレーンの 研究開発に従事。

石塚 真一(いしづか しんいち)

研究開発部先行開発部に 所属。 レーザーディスク回路の開発,LCLVプロジェクタ駆動 回路の開発,有機ELディスプレイ駆動回路の開発,有 機トランジスタの研究を経て,現在,塗布型バックプ レーンの研究開発に従事。

吉澤 淳志(よしざわ あつし)

研究開発部EL研究部に 所属。 コンパクトディスク,有機系色素を用いた追記型光ディ スク,電子放出素子の研究開発,有機ELを用いた3D ディスプレイ,有機トランジスタの研究を経て,現在, 塗布型バックプレーンの研究開発に従事。